ABOUT ME

-

Today
-
Yesterday
-
Total
-
  • detr_demo.ipynb 코드 해부하기
    study

    코드 : https://colab.research.google.com/github/facebookresearch/detr/blob/colab/notebooks/detr_demo.ipynb

    from PIL import Image
    import requests
    import matplotlib.pyplot as plt
    %config InlineBackend.figure_format = 'retina'
    
    import torch
    from torch import nn
    from torchvision.models import resnet50
    import torchvision.transforms as T
    torch.set_grad_enabled(False);

    불러온 모듈은 다음과 같다

        def __init__(self, num_classes, hidden_dim=256, nheads=8,
                     num_encoder_layers=6, num_decoder_layers=6):
            super().__init__() # 슈퍼클래스
    
            # create ResNet-50 backbone 
            self.backbone = resnet50()#ResNet50 모델 사용
            del self.backbone.fc
    
            # create conversion layer
            self.conv = nn.Conv2d(2048, hidden_dim, 1) #ResNet50을 사용하였기 때문에 
    
            # create a default PyTorch transformer
            self.transformer = nn.Transformer(
                hidden_dim, nheads, num_encoder_layers, num_decoder_layers)
    
            # prediction heads, one extra class for predicting non-empty slots
            # note that in baseline DETR linear_bbox layer is 3-layer MLP
            self.linear_class = nn.Linear(hidden_dim, num_classes + 1)
            self.linear_bbox = nn.Linear(hidden_dim, 4)
    
            # output positional encodings (object queries)
            self.query_pos = nn.Parameter(torch.rand(100, hidden_dim))
    
            # spatial positional encodings
            # note that in baseline DETR we use sine positional encodings
            self.row_embed = nn.Parameter(torch.rand(50, hidden_dim // 2))
            self.col_embed = nn.Parameter(torch.rand(50, hidden_dim // 2))
     def forward(self, inputs):
            # propagate inputs through ResNet-50 up to avg-pool layer
            x = self.backbone.conv1(inputs)
            x = self.backbone.bn1(x)
            x = self.backbone.relu(x)
            x = self.backbone.maxpool(x)
    
            x = self.backbone.layer1(x)
            x = self.backbone.layer2(x)
            x = self.backbone.layer3(x)
            x = self.backbone.layer4(x)
    
            # convert from 2048 to 256 feature planes for the transformer
            h = self.conv(x) 
    
            # construct positional encodings
            H, W = h.shape[-2:]
            pos = torch.cat([
                self.col_embed[:W].unsqueeze(0).repeat(H, 1, 1),
                self.row_embed[:H].unsqueeze(1).repeat(1, W, 1),
            ], dim=-1).flatten(0, 1).unsqueeze(1)
    
            # propagate through the transformer
            h = self.transformer(pos + 0.1 * h.flatten(2).permute(2, 0, 1),
                                 self.query_pos.unsqueeze(1)).transpose(0, 1)
            
            # finally project transformer outputs to class labels and bounding boxes
            return {'pred_logits': self.linear_class(h), 
                    'pred_boxes': self.linear_bbox(h).sigmoid()}

    h.flatten(2) 차원을 줄였고 permute,transpose로 shape을 맞췄다. 

    detr = DETRdemo(num_classes=91)
    state_dict = torch.hub.load_state_dict_from_url(
        url='https://dl.fbaipublicfiles.com/detr/detr_demo-da2a99e9.pth',
        map_location='cpu', check_hash=True)
    detr.load_state_dict(state_dict)
    detr.eval();

    data 로드 

    # COCO classes
    CLASSES = [
        'N/A', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
        'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A',
        'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse',
        'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack',
        'umbrella', 'N/A', 'N/A', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis',
        'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove',
        'skateboard', 'surfboard', 'tennis racket', 'bottle', 'N/A', 'wine glass',
        'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich',
        'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake',
        'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table', 'N/A',
        'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard',
        'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A',
        'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier',
        'toothbrush'
    ]
    
    # colors for visualization
    COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
              [0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]]

    91개의 coco 라벨

    # standard PyTorch mean-std input image normalization
    transform = T.Compose([
        T.Resize(800),
        T.ToTensor(),
        T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])
    
    # for output bounding box post-processing
    def box_cxcywh_to_xyxy(x):
        x_c, y_c, w, h = x.unbind(1)
        b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
             (x_c + 0.5 * w), (y_c + 0.5 * h)]
        return torch.stack(b, dim=1)
    
    def rescale_bboxes(out_bbox, size):
        img_w, img_h = size
        b = box_cxcywh_to_xyxy(out_bbox)
        b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32)
        return b

    표즌 imagenet 정규화를 사용한다. 

    이미지 좌표 (x,y,w,h)에서 (x는 x 중앙, y는 y중앙 , w,h 는 너비와 높이 ) 좌표는 상대적이며 0 1 사이값이기 때문에 (x0,y0,x1,y1) 형식으로 절대좌표로 치환한다.

    def detect(im, model, transform):
        # mean-std normalize the input image (batch-size: 1)
        img = transform(im).unsqueeze(0)
    
        # demo model only support by default images with aspect ratio between 0.5 and 2
        # if you want to use images with an aspect ratio outside this range
        # rescale your image so that the maximum size is at most 1333 for best results
        assert img.shape[-2] <= 1600 and img.shape[-1] <= 1600, 'demo model only supports images up to 1600 pixels on each side'
    
        # propagate through the model
        outputs = model(img)
    
        # keep only predictions with 0.7+ confidence
        probas = outputs['pred_logits'].softmax(-1)[0, :, :-1]
        keep = probas.max(-1).values > 0.7
    
        # convert boxes from [0; 1] to image scales
        bboxes_scaled = rescale_bboxes(outputs['pred_boxes'][0, keep], im.size)
        return probas[keep], bboxes_scaled

    detect 펑션

    url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
    im = Image.open(requests.get(url, stream=True).raw)
    
    scores, boxes = detect(im, detr, transform)

     

    귀여운 고양이사진

    def plot_results(pil_img, prob, boxes):
        plt.figure(figsize=(16,10))
        plt.imshow(pil_img)
        ax = plt.gca()
        for p, (xmin, ymin, xmax, ymax), c in zip(prob, boxes.tolist(), COLORS * 100):
            ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,
                                       fill=False, color=c, linewidth=3))
            cl = p.argmax()
            text = f'{CLASSES[cl]}: {p[cl]:0.2f}'
            ax.text(xmin, ymin, text, fontsize=15,
                    bbox=dict(facecolor='yellow', alpha=0.5))
        plt.axis('off')
        plt.show()
        
    plot_results(im, scores, boxes)

    결과 출력

    댓글

Designed by Tistory.